Pb isotopes as the finger print for distinguishing between natural and anthropogenic sources

Anugrah Ricky Wijaya*, Irma Kartika Kusumaningrum Department of Chemistry, Universitas Negeri Malang (UM), Jalan Semarang 5, Malang, 65145, Indonesia *Email: anugrah.ricky.fmipa@um.ac.id

Abstract

Pb isotopes can be used in the many ways to use their ratio isotopes for detecting natural and anthropogenic sources. We used the accuracy and precision of analytical methods using ICP-MS/TIMS and then normalized using the specific values of ²⁰⁸Pb/²⁰⁶Pb and ²⁰⁷Pb/²⁰⁶Pb. The data references of ore Pb from Daylight-Errington toronto #359 mines as group-1 with age in 1900-3200 M.a to Manitauwadge Wilray #332-Snake Lake # 660* mines as group-4 with age in the present day were measured, calculated, and modified of lead isotope ratios using the single-stage model of stable isotopes from parent rocks. The lead isotope ratios as ²⁰⁶Pb/²⁰⁴Pb, ²⁰⁷Pb/²⁰⁴Pb, and ²⁰⁸Pb/²⁰⁴Pb were involved to convert ²⁰⁸Pb/²⁰⁶Pb and ²⁰⁷Pb/²⁰⁶Pb using ²³⁵U/²⁰⁴Pb, ²³²Th/²⁰⁴Pb (present-day values), ²³⁸U/²³⁵U (present) with the time of decay constants 0.155125 x 10-⁹ yr⁻¹, 0.155125 x 10-⁹ yr⁻¹. The new decay constants and the corrected ratios were found after choosing the assumsion time from present day to the classial age for production of lead growth curved. The values Pb isotope ratios of ²⁰⁸Pb/²⁰⁶Pb and ²⁰⁷Pb/²⁰⁶Pb then were applied to lead growth curved for investigating and detecting the anthropogenic and natural inputs.

Keywords: Sediment, Pb isotopes, Anthropogenic, Natural Sources, Ore Pb

1. Introduction

Lead is devided the four main its isotopes and abundance such as ²⁰⁸Pb (52%), ²⁰⁶Pb (24%), ²⁰⁷Pb (23%) and ²⁰⁴Pb (1%). That Pb isotopes were released by the series decay chain products from primordial ²³⁸U, ²³⁵U, and ²³²Th (except for ²⁰⁴Pb). Three Pb isotopes, ²⁰⁸Pb, ²⁰⁶Pb, ²⁰⁷Pb were radiogenically made in as the daughter products. The ²⁰⁴Pb is used as the baseline to estimate excess radiogenic of Pb present in media samples. The excess of radiogenic ²⁰⁸Pb, ²⁰⁶Pb, ²⁰⁶Pb, ²⁰⁷Pb can be measured as ²⁰⁸Pb/²⁰⁶Pb or ²⁰⁷Pb/²⁰⁶Pb to understand for adding the new Pb anthropogenic [1].

Besides of radiogenically Pb isotopes, the radioactive isotopes ²¹⁰Pb, ²¹²Pb, and ²¹⁴Pb were also determined to detect the history of lead inputs in the environment. Especially for ²¹⁰Pb, some researchers confirmed to calculate the dating of ice, sediment, pond sediment, and

peat deposits for history of pollution from ancient to modern time [2,3]. However, the analysis of Pb radioactives of the various exposure categories make analysis difficult for accuracy and precision.

In case of radiogenically Pb or Pb stable isotopes, from the process total Pb concentrations to ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb and ²⁰⁴Pb isotopes are not effected by the chemical fractionation processes. Pb isotope ratios then were chosen as a methode of accuracy and precision to determine the sources and their pathways of Pb pollution [4]. The Pb isotope ratios are commonly used as ²⁰⁶Pb/²⁰⁴Pb, ²⁰⁸Pb/²⁰⁶Pb with ²⁰⁶Pb/²⁰⁷Pb or ²⁰⁷Pb/²⁰⁶Pb to invetigate the source of Pb [4–6]. In order to determine accuracy and precision of Pb isotope ratios, their normalization should have the lowest variability between errors. The abundance of ²⁰⁷Pb has slightly changed with time compared to ²⁰⁶Pb due to the effect of completely decayed by ²³⁵U, while ²³⁸U is more abundantly in the earth. In addition, the researcher did not use the ²⁰⁴Pb for ratio isotope because of its stable abundant value and distinguish between Pb ratio isotope values.

²⁰⁸Pb/²⁰⁶Pb with ²⁰⁷Pb/²⁰⁶Pb are used as track to the origin of Pb contamination in several media such as plants, mammals, river and ocean water, sediment, road-side dust [4–7]. The plot of their values of Pb isotope ratios in the growth curved of Pb is more important to distinguish the anthropogenic and natural of Pb. In the growth curved of Pb, some values of Pb isotope ratios undergo overlapping and indicates the sources of sample. Some researchers using the growth curved investigated sources of Pb [6,8]. In this study, we clearly reported how to use the lead growth curved of Pb and its assessment for ²⁰⁸Pb/²⁰⁶Pb with ²⁰⁷Pb/²⁰⁶Pb.

2. Methodology

2.1 Calculation and Formation of Pb Growth Curved

In order to build the equations of building Pb growth curve, we used some references of the mines in the world. The measured of Pb isotope values were combinated in the radioanalytical chemistry equation using single stage 1 modelling [8]. The recent and oldest of mines correlated with the ages reflected the change of Pb isotope ratios. All of originally mines in the world measured by isotope ratios of ²⁰⁸Pb/²⁰⁴Pb, ²⁰⁷Pb/²⁰⁴Pb, ²⁰⁶Pb/²⁰⁴Pb were converted to ²⁰⁸Pb/²⁰⁶Pb and ²⁰⁷Pb/²⁰⁶Pb (Table 1). As list in Table 1, we have the references with our modified calculations start from recently mine to old sediment. We classified the 4 groups of mines based on the range of the geological age to understand the change of Pb isotope ratios [6,8]. Group-1 used the reference of Daylight to Errington mine toronto 359 indicating the lowest Pb isotope ratios of ²⁰⁶Pb/²⁰⁴Pb, ²⁰⁷Pb/²⁰⁴Pb, and ²⁰⁸Pb/²⁰⁴Pb and the highest of their Pb isotope ratios of group-4 from Manitauwadge Willroy # 332 to Snake Lake # 660*. The pattern of value of ²⁰⁸Pb/²⁰⁴Pb, ²⁰⁷Pb/²⁰⁴Pb, ²⁰⁷Pb/²⁰⁴Pb, and ²⁰⁸Pb/²⁰⁴Pb.

Samples	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁴ Pb	²⁰⁸ Pb/ ²⁰⁴ Pb	Geological	²⁰⁸ Pb/ ²⁰⁶ Pb	²⁰⁷ Pb/ ²⁰⁶ Pb
				Age (Ma)		
Group-1						
Daylight-						
Errington	12.4310-	14.0650-	32.2700-		2.5959-	1.1314-
toronto # 359	15.4890	15.3030	35.3380	1900-3200	2.2815	0.9980
Group-2						
Southwest -	15.6760-	15.3280-	35.2330-		2.2476-	0.9778-
Finland-Balmat	16.9350	15.5050	36.4230	1080~1700	2.1508	0.9156
Group-3						
Captains Flat -	18.0650 -	15.6140 -	38.1570 -	0 - 425	2.1122	0.8643
White island	18.7720	15.5980	38.6620		2.0596	0.8309
Group-4						
Manitauwadge						
Willroy # 332	13.2860	14.4110	33.1190	-	2.4928	1.0847
Snake Lake #						
660	15.7090	15.2560	35.1760	-	2.2392	0.9712

Table 1 Pb isotope ratios of mines in the world

- Geological age of present day

After modified the values of $^{208}Pb/^{206}Pb$ vs $^{207}Pb/^{206}Pb$, we need the assumption of time for production of Pb growth curved. The calculated of Pb isotope ratios from 1x10⁹ years to 4x10⁹ years are listed in Table 2.

t (x 10 ⁹ year)	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁴ Pb	²⁰⁸ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁸ Pb/ ²⁰⁶ Pb
0	18.465	15.642	38.507	0.847	2.085
1	16.9284	15.531	36.678	0.917	2.167
2	15.134	15.232	34.757	1.006	2.297
3	13.0384	14.434	32.738	1.107	2.511
4	10.5913	12.296	30.616	1.161	2.891

Table 2 The assumption time using the single-stage model

We then Used the single-stage model of Russell and Reynolds with the formula as follows [8]:

 $^{206}Pb/^{204}Pb = X = a + \alpha V(1-e^{\lambda t})$

 ${}^{207}Pb/{}^{204}Pb = Y = b + V(1 - e^{\lambda' t})$

 $^{208}Pb/^{204}Pb = Z = c + W(1-e^{\lambda''t})$

Using the software modelling, the constants of $\lambda = 0.155125 \times 10^{-9} \text{ yr}^{-1}$, $\lambda' = 0.155125 \times 10^{-9} \text{ yr}^{-1}$, $\alpha = ^{238}\text{U}/^{235}\text{U} = 137.88$ were inserted to solve the chemical formula. The result showed the corrected values from modification in the values of Pb isotope ratios, as follows: $a = 18.465 \pm 0.074$, $b = 15.642 \pm 0.010$ and $c = 38.057 \pm 0.095$, whereas V = 0.066413 \pm 0.00085 and W = 36.058 \pm 0.13.

The calculated of $^{208}Pb/^{206}Pb$ and $^{207}Pb/^{206}Pb$ values vs the assumption time as list in Table 2 are plotted in Figure 1.

Figure 1 shows the lower of ²⁰⁸Pb/²⁰⁶Pb vs. ²⁰⁷Pb/²⁰⁶Pb indicates the recent mine or ores with the present day and the high values of them reflected the oldest mine. The Pb-growth curved was made in the mine of the ore, which considered as the part of content in media samples. This figure provided the finger print of mine inside with the relation with time of its age. The line of this figure, it indicates by Pb pollution contained the mine, which contribute the high of level Pb concentration.

3. Results and Discussion3.1 Application of Lead growth Curved for Identification of Pb

Application of Pb growth curved is very important to detect the source of anthropogenic and natural inputs with all samples contained Pb. The group of samples were

categorized with group anthropogenic or natural depending the values of ²⁰⁸Pb/²⁰⁶Pb and ²⁰⁷Pb/²⁰⁶Pb. The characterized of sample group anthropogenic and natural sources cannot be changed with chemical fractionations of Pb. The measurements of Pb isotopes using ICP-MS (Inductivelly Coupled Plasma-Mass Spectrometry) always are depended the concentration of Pb. When we knew the concentration of Pb, the process dilution of Pb should be the same with the standard concentrations of ²⁰⁸Pb/²⁰⁶Pb and ²⁰⁷Pb/²⁰⁶Pb (~10 ppb) for all samples. Using ICP-MS, it measures the ²⁰⁴Pb, ²⁰⁶Pb, ²⁰⁷Pb and ²⁰⁸Pb and then corrects their mass bias with SRM (Standard Reference Material) after every two samples.

All investigated samples were measured of Pb concentratios using ICP-MS and then continued to measure the reference of anthropogenic and natural sources with the same procedures. All of investigated samples and the reference should content of Pb concentations for continuing the Pb isotope measurements. The content of Pb and its Pb isotope ratios in the ancient of samples were changed by modern of Pb-anthropogenic. For example, the range of Pb isotope ratios of the river sediment, road-side dust, seawater were recorded, as follows: $^{208}Pb/^{206}Pb$: 2.075-2.113 and $^{207}Pb/^{206}Pb$: 0.834-0.868, $^{207}Pb/^{206}Pb = 0.8644-0.8688$ and $^{208}Pb/^{206}Pb = 2.1044-2.170$, and $^{207}Pb/^{206}Pb = 0.7966-0.9945$ and $^{208}Pb/^{206}Pb = 2.2600-2.8243$ [4–6]. As shown in Figure 2, there are 3 groups for the finger print of Pb isotope ratios of sediment, road-side dust and seawater samples, respectivelly. Pb concentrations in road-side dust contaminated the part of sediment and seawater samples. In order to understand of the source of Pb, we plotted the another media samples, which suspected the anthropogenic and natural sources surrounding sampled locations.

Figure 2. Application of ²⁰⁸Pb/²⁰⁶Pb vs ²⁰⁷Pb/²⁰⁶Pb in the Pb growth curved

The Pb isotope ratios of the sediment with lower ratios closes with the Pb isotope ratios of fly ash indicating the most of sediment contaminated by Pb-fly ash. This means it can support the policies government to recheck the sewage of industry surrounding the collected sediment. Sediment can reflect the contaminated of Pb. The sewage of industry released Pb-materials products such as Pb-battery, Pb solder, Pb-fly ash brick plant. The finger print of Pb isotope ratios in road-side dust clearly contributed from Pb-battery and Pb-solder (Figure 2). As shown in Figure 2, the Pb battery and solder can be considered by vehicles crossing the sampled road-side dust. All of electronic components from old vehicles is possibly as one factor releasing Pb to road-side dust.

Pb isotope ratios of seawater samples is more radiogenic comparing with those in sediment and road-side dust. The values of Pb isotopes of mine as compiler the Pb concentrations in seawater samples indicated the recient of Pb. The Pb concentration in seawater was released by mineral sources in seawater sediment and effected by anthropogenic inputs from river or urbanized areas. As shown in Figure 2, the dominated of Pb in seawater possibly was derivated from road-side dust. However, in the finger print of Pb in seawater was experienced the overlapping with Pb isotope ratios of seawater mineral. Seawater mineral was derivated from lithogenic or natural sources in marine sediment. The Pb in marine sediment was leached by acid condition of seawater when it is effected by acid rain or abundance of sewage from urbanized areas.

As shown in Figure 2, some samples falled out from the growth curved and reference materials indicating unknown sources. The unknown source of Pb samples indicates the new mine or modern mine and do not have the specific characters or mineralogical of Pb. We need more explore of Pb surrounding collected samples which mineral suspected to nearly contribute Pb in media samples.

Figure 2 also shows the useful of Pb isotope ratios of two kind samples such as roadside dust and sediment were tended to Pb-anthropogenic and seawater sample was effected by natural sources. The Pb-anthropogenic samples are identified by Pb-pollution and output of this research is to support policies government. However, the Pb-natural sources was shown by Pb isotope ratios of seawater can be used the local people and researcher increase the shrimp and fisheries productivities [6,9]. They can more explore the physico-chemical characteristics to support the potensial area. Wijaya et al. [6] reported that the positive correlation between the natural of Pb isotope ratios in seawater with clorophyll *a* and the values of DO, BOD, COD, pH, and temperature were determined in accordance with their values of WHO (World Health Organization).

In order to confirm the value of Pb isotope ratios of samples contributed by natural source, we can continue to measure ²³⁸U, ²³⁵U, and ²³²Th by ICP-MS (Figure 3). Measuring of U and Th were measured in the same media sample and then modified as ²³⁸U/²³⁵U and

²³²Th/²³⁵U. The positive correlation of ²⁰⁸Pb/²⁰⁶Pb vs ²³⁸U/²³⁵U and ²⁰⁷Pb/²⁰⁶Pb vs ²³²Th/²³⁵U were shown in Figures 3a and b indicating the positive of Pb source from parents rock. As shown in Figure 3, the increasing of values of ²⁰⁸Pb/²⁰⁶Pb was followed by values of ²³⁸U/²³⁵U with R² 0.8344. It suggests the natural sources of the daughter of ²⁰⁸Pb, ²⁰⁶Pb originated by parents rock ²³⁸U and ²³⁵U. When the correlation of those was less than 0.45, it was possibly contaminated by Pb-anthropogenic inside due to the overlapping of Pb values.

Figure 3 Relationship between (a) ²⁰⁸Pb/²⁰⁶Pb vs ²³⁸U/²³⁵U (b) and ²⁰⁷Pb/²⁰⁶Pb vs ²³²Th/²³⁵U.

In case of ²⁰⁷Pb/²⁰⁶Pb, the positive correlation with ²³²Th/²³⁵U was also shown in Figure 3b. ²⁰⁷Pb, ²⁰⁶Pb indicated from the parent rocks from ²³²Th, and ²³⁵U, respectivelly. The pattern of ²⁰⁷Pb/²⁰⁶Pb vs ²³²Th/²³⁵U differed with ²⁰⁸Pb/²⁰⁶Pb vs ²³⁸U/²³⁵U. A little change of pattern of ²³²Th/²³⁵U indicates the slowly decay from parent rocks (0.800-0.900). As shown in Figure 3a, the both of positive correlation of ²⁰⁷Pb/²⁰⁶Pb vs ²³²Th/²³⁵U and ²⁰⁸Pb/²⁰⁶Pb vs ²³⁸U/²³⁵U reflected the pure of Pb-natural sources. When one of those has the negative correlation between their correlation indicates the mixture of Pb natural and anthropogenic sources.

Conclusion

Detection using Pb isotope ratios were started to calculate Pb concentrations of samples. Pb concentrations were then changed by ²⁰⁸Pb, ²⁰⁶Pb, ²⁰⁷Pb and ²⁰⁴Pb to establish accuracy and precision of ²⁰⁸Pb/²⁰⁶Pb vs ²⁰⁷Pb/²⁰⁶Pb. The value of ²⁰⁸Pb/²⁰⁶Pb and ²⁰⁷Pb/²⁰⁶Pb of samples were plotted with the lead growth curved. The overlapping of the values isotope ratios of samples with anthropogenic and natural references indicates the samples come from anthropogenic or natural inputs.

Acknowledgement

This reserach was fully supported by the PNBP grant (2018), Universitas Negeri Malang (UM).

References

- Baker J, Peate D, Waight T, Meyzen C. Pb isotopic analysis of standards and samples using a 207 Pb– 204 Pb double spike and thallium to correct for mass bias with a doublefocusing MC-ICP-MS. Chemical Geology 2004;211:275–303. doi:10.1016/j.chemgeo. 2004.06.030.
- [2] Vile MA, Wieder RK, Novák M. 200 Years of Pb Deposition throughout the Czech Republic: Patterns and Sources. Environmental Science & Technology 2000;34:12–21. doi:10.1021/es990032q.
- [3] Sanchez-Cabeza JA, Ruiz-Fernández AC. 210Pb sediment radiochronology: An integrated formulation and classification of dating models. Geochimica et Cosmochimica Acta 2012;82:183–200. doi:10.1016/j.gca.2010.12.024.
- [4] Wijaya AR, Ouchi AK, Tanaka K, Shinjo R, Ohde S. Metal contents and Pb isotopes in road-side dust and sediment of Japan. Journal of Geochemical Exploration 2012;118:68– 76. doi:10.1016/j.gexplo.2012.04.009.
- [5] Wijaya AR, Ouchi AK, Tanaka K, Cohen MD, Sirirattanachai S, Shinjo R, et al. Evaluation of heavy metal contents and Pb isotopic compositions in the Chao Phraya River sediments: Implication for anthropogenic inputs from urbanized areas, Bangkok. Journal of Geochemical Exploration 2013;126–127:45–54. doi:10.1016/j.gexplo.2012.12.009.
- [6] Wijaya A, Semedi B, Lusiana R, Armid A, Muntholib M. Metal Contents and Pb Isotopes in the Surface Seawater of the Gulf of Prigi, Indonesia: Detection of Anthropogenic and

Natural Sources. Journal of the Brazilian Chemical Society 2018. doi:10.21577/0103-5053.20180228.

- [7] Wijaya AR, Ohde S, Shinjo R, Ganmanee M, Cohen MD. Geochemical fractions and modeling adsorption of heavy metals into contaminated river sediments in Japan and Thailand determined by sequential leaching technique using ICP-MS. Arabian Journal of Chemistry 2016. doi:10.1016/j.arabjc.2016.10.015.
- [8] Cumming GL, Richards JR. Ore lead isotope ratios in a continuously changing earth. Earth and Planetary Science Letters 1975;28:155–71. doi:10.1016/0012-821X(75)90223-X.
- [9] Ariadi Lusiana R, Putri Protoningtyas W, Ricky Wijaya A, Siswanta D, Mudasir M, Juari Santosa S. Chitosan-Tripoly Phosphate (CS-TPP) Synthesis Through Cross-linking Process: the Effect of Concentration Towards Membrane Mechanical Characteristic and Urea Permeation. Oriental Journal of Chemistry 2017;33:2913–9. doi:10.13005/ojc/330626.